
JAVA BASICS

Java is a high-level, general-purpose, object-oriented, and secure programming language

developed by James Gosling at Sun Microsystems, Inc. in 1991. It is formally known as OAK.

In 1995, Sun Microsystem changed the name to Java. In 2009, Sun Microsystem takeover by

Oracle Corporation.

Editions of Java

Each edition of Java has different capabilities. There are three editions of Java:

o Java Standard Editions (JSE): It is used to create programs for a desktop computer.

o Java Enterprise Edition (JEE): It is used to create large programs that run on the server and

manages heavy traffic and complex transactions.

o Java Micro Edition (JME): It is used to develop applications for small devices such as set-

top boxes, phone, and appliances.

Types of Java Applications

There are four types of Java applications that can be created using Java programming:

o Standalone Applications: Java standalone applications uses GUI components such as AWT,

Swing, and JavaFX. These components contain buttons, list, menu, scroll panel, etc. It is also

known as desktop alienations.

o Enterprise Applications: An application which is distributed in nature is called enterprise

applications.

o Web Applications: An applications that run on the server is called web applications. We use

JSP, Servlet, Spring, and Hibernate technologies for creating web applications.

o Mobile Applications: Java ME is a cross-platform to develop mobile applications which run

across smartphones. Java is a platform for App Development in Android.

Java Platform

Java Platform is a collection of programs. It helps to develop and run a program written in the

Java programming language. Java Platform includes an execution engine, a compiler and set

of libraries. Java is a platform-independent language.

Features of Java

o Simple: Java is a simple language because its syntax is simple, clean, and easy to understand.

Complex and ambiguous concepts of C++ are either eliminated or re-implemented in Java. For

example, pointer and operator overloading are not used in Java.

o Object-Oriented: In Java, everything is in the form of the object. It means it has some data

and behavior. A program must have at least one class and object.

o Robust: Java makes an effort to check error at run time and compile time. It uses a strong

memory management system called garbage collector. Exception handling and garbage

collection features make it strong.

o Secure: Java is a secure programming language because it has no explicit pointer and programs

runs in the virtual machine. Java contains a security manager that defines the access of Java

classes.

o Platform-Independent: Java provides a guarantee that code writes once and run anywhere.

This byte code is platform-independent and can be run on any machine.

o Portable: Java Byte code can be carried to any platform. No implementation-dependent

features. Everything related to storage is predefined, for example, the size of primitive data

types.

o High Performance: Java is an interpreted language. Java enables high performance with the

use of the Just-In-Time compiler.

o Distributed: Java also has networking facilities. It is designed for the distributed environment

of the internet because it supports TCP/IP protocol. It can run over the internet. EJB and RMI

are used to create a distributed system.

o Multi-threaded: Java also supports multi-threading. It means to handle more than one job a

time.

OOPs (Object Oriented Programming System)

Object-oriented programming is a way of solving a complex problem by breaking them into a

small sub-problem. An object is a real-world entity. It is easier to develop a program by using

an object. In OOPs, we create programs using class and object in a structured manner.

Class: A class is a template or blueprint or prototype that defines data members and methods

of an object. An object is the instance of the class. We can define a class by using the class

keyword.

Object: An object is a real-world entity that can be identified distinctly. For example, a desk,

a circle can be considered as objects. An object has a unique behavior, identity, and state. Data

fields with their current values represent the state of an object (also known as its properties or

attributes).

Abstraction: An abstraction is a method of hiding irrelevant information from the user. For

example, the driver only knows how to drive a car; there is no need to know how does the car

run. We can make a class abstract by using the keyword abstract. In Java, we use abstract class

and interface to achieve abstraction.

Encapsulation: An encapsulation is the process of binding data and functions into a single

unit. A class is an example of encapsulation. In Java, Java bean is a fully encapsulated class.

Inheritance: Inheritance is the mechanism in which one class acquire all the features of

another class. We can achieve inheritance by using the extends keyword. It facilitates the

reusability of the code.

Polymorphism: The polymorphism is the ability to appear in many forms. In other words,

single action in different ways. For example, a boy in the classroom behaves like a student, in

house behaves like a son. There are two types of polymorphism: run time polymorphism and

compile-time polymorphism.

 Classes and Objects

An object in Java is the physical as well as a logical entity, whereas, a class in Java is a logical

entity only.

An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen, table,

car, etc. It can be physical or logical (tangible and intangible). The example of an intangible

object is the banking system.

An object has three characteristics:

State: represents the data (value) of an object.

Behavior: represents the behavior (functionality) of an object such as deposit, withdraw, etc.

Identity: An object identity is typically implemented via a unique ID. The value of the ID is

not visible to the external user. However, it is used internally by the JVM to identify each object

uniquely.

Characteristics of Object in Java

For Example, Pen is an object. Its name is Reynolds; color is white, known as its state. It is

used to write, so writing is its behavior.

An object is an instance of a class. A class is a template or blueprint from which objects are

created. So, an object is the instance(result) of a class.

Object Definitions:

An object is a real-world entity.

An object is a runtime entity.

The object is an entity which has state and behavior.

The object is an instance of a class.

What is a class in Java

A class is a group of objects which have common properties. It is a template or blueprint from

which objects are created. It is a logical entity. It can't be physical.

A class in Java can contain:

Fields

Methods

Constructors

Blocks

Nested class and interface

Class in Java

Syntax to declare a class:

class <class_name>{

 field;

 method;

}

Instance variable in Java

A variable which is created inside the class but outside the method is known as an instance

variable. Instance variable doesn't get memory at compile time. It gets memory at runtime when

an object or instance is created. That is why it is known as an instance variable.

Method in Java

In Java, a method is like a function which is used to expose the behavior of an object.

Advantage of Method

Code Reusability

Code Optimization

new keyword in Java

The new keyword is used to allocate memory at runtime. All objects get memory in Heap

memory area.

Object and Class Example: main within the class

In this example, we have created a Student class which has two data members id and name.

We are creating the object of the Student class by new keyword and printing the object's value.

Here, we are creating a main() method inside the class.

File: Student.java

//Java Program to illustrate how to define a class and fields

//Defining a Student class.

class Student{

 //defining fields

 int id;//field or data member or instance variable

 String name;

 //creating main method inside the Student class

 public static void main(String args[]){

 //Creating an object or instance

 Student s1=new Student();//creating an object of Student

 //Printing values of the object

 System.out.println(s1.id);//accessing member through reference variable

 System.out.println(s1.name);

 }

}

Strings

In Java, string is basically an object that represents sequence of char values. An array of

characters works same as Java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};

2. String s=new String(ch);

is same as:

1. String s="javatpoint";

Java String class provides a lot of methods to perform operations on strings such as compare(),

concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring() etc.

Thejava.lang.Stringclassimplements Serializable, Comparable and CharSequence interfaces.

https://www.javatpoint.com/java-tutorial
https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/interface-in-java

CharSequence Interface

The CharSequence interface is used to represent the sequence of characters.

String, StringBuffer and StringBuilder classes implement it. It means, we can create strings in

Java by using these three classes.

The Java String is immutable which means it cannot be changed. Whenever we change any

string, a new instance is created. For mutable strings, you can use StringBuffer and

StringBuilder classes.

We will discuss immutable string later. Let's first understand what String in Java is and how to

create the String object.

What is String in Java?

Generally, String is a sequence of characters. But in Java, string is an object that represents a

sequence of characters. The java.lang.String class is used to create a string object.

How to create a string object?

There are two ways to create String object:

https://www.javatpoint.com/StringBuffer-class
https://www.javatpoint.com/StringBuilder-class

1. By string literal

2. By new keyword

1) String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the "string constant pool" first. If the

string already exists in the pool, a reference to the pooled instance is returned. If the string

doesn't exist in the pool, a new string instance is created and placed in the pool. For example:

1. String s1="Welcome";

2. String s2="Welcome";//It doesn't create a new instance

In the above example, only one object will be created. Firstly, JVM will not find any string

object with the value "Welcome" in string constant pool that is why it will create a new object.

After that it will find the string with the value "Welcome" in the pool, it will not create a new

object but will return the reference to the same instance.

Note: String objects are stored in a special memory area known as

the "string constant pool".

Why Java uses the concept of String literal?

To make Java more memory efficient (because no new objects are created if it exists already

in the string constant pool).

2) By new keyword
1. String s=new String("Welcome");//creates two objects and one reference variable

In such case, JVM will create a new string object in normal (non-pool) heap memory, and the

literal "Welcome" will be placed in the string constant pool. The variable s will refer to the

object in a heap (non-pool).

StringExample.java

public class StringExample{

public static void main(String args[]){

String s1="java";//creating string by Java string literal

char ch[]={'s','t','r','i','n','g','s'};

String s2=new String(ch);//converting char array to string

String s3=new String("example");//creating Java string by new keyword

System.out.println(s1);

System.out.println(s2);

System.out.println(s3);

}}

Inheritance

Inheritance in Java is a mechanism in which one object acquires all the properties and

behaviors of a parent object. It is an important part of OOPs (Object Oriented programming

system).

The idea behind inheritance in Java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields of

the parent class. Moreover, you can add new methods and fields in your current class also.

Inheritance represents the IS-A relationship which is also known as a parent-

child relationship.

Why use inheritance in java

o For Method Overriding (so runtime polymorphism can be achieved).

o For Code Reusability.

https://www.javatpoint.com/jvm-java-virtual-machine
https://www.javatpoint.com/java-oops-concepts
https://www.javatpoint.com/object-and-class-in-java
https://www.javatpoint.com/method-overriding-in-java
https://www.javatpoint.com/runtime-polymorphism-in-java

Terms used in Inheritance

o Class: A class is a group of objects which have common properties. It is a template or blueprint

from which objects are created.

o Sub Class/Child Class: Subclass is a class which inherits the other class. It is also called a

derived class, extended class, or child class.

o Super Class/Parent Class: Superclass is the class from where a subclass inherits the features.

It is also called a base class or a parent class.

o Reusability: As the name specifies, reusability is a mechanism which facilitates you to reuse

the fields and methods of the existing class when you create a new class. You can use the same

fields and methods already defined in the previous class.

The syntax of Java Inheritance

1. class Subclass-name extends Superclass-name

2. {

3. //methods and fields

4. }

The extends keyword indicates that you are making a new class that derives from an existing

class. The meaning of "extends" is to increase the functionality.

In the terminology of Java, a class which is inherited is called a parent or superclass, and the

new class is called child or subclass.

Java Inheritance Example

As displayed in the above figure, Programmer is the subclass and Employee is the superclass.

The relationship between the two classes is Programmer IS-A Employee. It means that

Programmer is a type of Employee.

1. class Employee{

2. float salary=40000;

3. }

4. class Programmer extends Employee{

5. int bonus=10000;

6. public static void main(String args[]){

7. Programmer p=new Programmer();

8. System.out.println("Programmer salary is:"+p.salary);

9. System.out.println("Bonus of Programmer is:"+p.bonus);

10. }

11. }
Programmer salary is:40000.0

 Bonus of programmer is:10000

In the above example, Programmer object can access the field of own class as well as of

Employee class i.e. code reusability.

Types of inheritance in java

On the basis of class, there can be three types of inheritance in java: single, multilevel and

hierarchical.

In java programming, multiple and hybrid inheritance is supported through interface only. We

will learn about interfaces later.

Note: Multiple inheritance is not supported in Java through class.

When one class inherits multiple classes, it is known as multiple inheritance. For Example:

Single Inheritance Example

When a class inherits another class, it is known as a single inheritance. In the example given

below, Dog class inherits the Animal class, so there is the single inheritance.

File: TestInheritance.java

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class TestInheritance{

8. public static void main(String args[]){

9. Dog d=new Dog();

10. d.bark();

11. d.eat();

12. }}

Output:

barking...

eating...

Multilevel Inheritance Example

When there is a chain of inheritance, it is known as multilevel inheritance. As you can see in

the example given below, BabyDog class inherits the Dog class which again inherits the

Animal class, so there is a multilevel inheritance.

File: TestInheritance2.java

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class BabyDog extends Dog{

8. void weep(){System.out.println("weeping...");}

9. }

10. class TestInheritance2{

11. public static void main(String args[]){

12. BabyDog d=new BabyDog();

13. d.weep();

14. d.bark();

15. d.eat();

16. }}

Output:

weeping...

barking...

eating...

Hierarchical Inheritance Example

When two or more classes inherits a single class, it is known as hierarchical inheritance. In

the example given below, Dog and Cat classes inherits the Animal class, so there is hierarchical

inheritance.

File: TestInheritance3.java

1. class Animal{

2. void eat(){System.out.println("eating...");}

3. }

4. class Dog extends Animal{

5. void bark(){System.out.println("barking...");}

6. }

7. class Cat extends Animal{

8. void meow(){System.out.println("meowing...");}

9. }

10. class TestInheritance3{

11. public static void main(String args[]){

12. Cat c=new Cat();

13. c.meow();

14. c.eat();

15. //c.bark();//C.T.Error

16. }}

Output:

meowing...

eating...

Why multiple inheritance is not supported in java?

To reduce the complexity and simplify the language, multiple inheritance is not supported in

java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B classes.

If A and B classes have the same method and you call it from child class object, there will be

ambiguity to call the method of A or B class.

Since compile-time errors are better than runtime errors, Java renders compile-time error if you

inherit 2 classes. So whether you have same method or different, there will be compile time

error.

1. class A{

2. void msg(){System.out.println("Hello");}

3. }

4. class B{

5. void msg(){System.out.println("Welcome");}

6. }

7. class C extends A,B{//suppose if it were

8.

9. public static void main(String args[]){

10. C obj=new C();

11. obj.msg();//Now which msg() method would be invoked?

12. }

13. }

Polymorphism and Interfaces

Polymorphism in Java is a concept by which we can perform a single action in different ways.

Polymorphism is derived from 2 Greek words: poly and morphs. The word "poly" means many

and "morphs" means forms. So polymorphism means many forms.

There are two types of polymorphism in Java: compile-time polymorphism and runtime

polymorphism. We can perform polymorphism in java by method overloading and method

overriding.

If you overload a static method in Java, it is the example of compile time polymorphism. Here,

we will focus on runtime polymorphism in java.

Runtime Polymorphism in Java

Runtime polymorphism or Dynamic Method Dispatch is a process in which a call to an

overridden method is resolved at runtime rather than compile-time.

ADVERTISEMENT

ADVERTISEMENT

In this process, an overridden method is called through the reference variable of a superclass.

The determination of the method to be called is based on the object being referred to by the

reference variable.

Let's first understand the upcasting before Runtime Polymorphism.

Upcasting

If the reference variable of Parent class refers to the object of Child class, it is known as

upcasting. For example:

1. class A{}

2. class B extends A{}

1. A a=new B();//upcasting

For upcasting, we can use the reference variable of class type or an interface type. For Example:

1. interface I{}

2. class A{}

3. class B extends A implements I{}

Here, the relationship of B class would be:

B IS-A A

B IS-A I

B IS-A Object

Since Object is the root class of all classes in Java, so we can write B IS-A Object.

ADVERTISEMENT

Example of Java Runtime Polymorphism

In this example, we are creating two classes Bike and Splendor. Splendor class extends Bike

class and overrides its run() method. We are calling the run method by the reference variable

of Parent class. Since it refers to the subclass object and subclass method overrides the Parent

class method, the subclass method is invoked at runtime.

Since method invocation is determined by the JVM not compiler, it is known as runtime

polymorphism.

1. class Bike{

2. void run(){System.out.println("running");}

3. }

4. class Splendor extends Bike{

5. void run(){System.out.println("running safely with 60km");}

6.

7. public static void main(String args[]){

8. Bike b = new Splendor();//upcasting

9. b.run();

10. }

11. }

Java Runtime Polymorphism Example: Bank

Consider a scenario where Bank is a class that provides a method to get the rate of interest.

However, the rate of interest may differ according to banks. For example, SBI, ICICI, and

AXIS banks are providing 8.4%, 7.3%, and 9.7% rate of interest.

Note: This example is also given in method overriding but there was no upcasting.

1. class Bank{

2. float getRateOfInterest(){return 0;}

3. }

4. class SBI extends Bank{

5. float getRateOfInterest(){return 8.4f;}

6. }

7. class ICICI extends Bank{

8. float getRateOfInterest(){return 7.3f;}

9. }

10. class AXIS extends Bank{

11. float getRateOfInterest(){return 9.7f;}

12. }

13. class TestPolymorphism{

14. public static void main(String args[]){

15. Bank b;

16. b=new SBI();

17. System.out.println("SBI Rate of Interest: "+b.getRateOfInterest());

18. b=new ICICI();

19. System.out.println("ICICI Rate of Interest: "+b.getRateOfInterest());

20. b=new AXIS();

21. System.out.println("AXIS Rate of Interest: "+b.getRateOfInterest());

22. }

23. }

Interface in java

An interface in Java is a blueprint of a class. It has static constants and abstract methods.

The interface in Java is a mechanism to achieve abstraction. There can be only abstract

methods in the Java interface, not method body. It is used to achieve abstraction and

multiple inheritance in Java.

In other words, you can say that interfaces can have abstract methods and variables. It cannot

have a method body.

Java Interface also represents the IS-A relationship.

It cannot be instantiated just like the abstract class.

Since Java 8, we can have default and static methods in an interface.

Since Java 9, we can have private methods in an interface.

https://www.javatpoint.com/abstract-class-in-java
https://www.javatpoint.com/inheritance-in-java

use Java interface

There are mainly three reasons to use interface. They are given below.

o It is used to achieve abstraction.

o By interface, we can support the functionality of multiple inheritance.

o It can be used to achieve loose coupling.

1. interface Printable{

2. void print();

3. }

4. interface Showable{

5. void show();

6. }

7. class A7 implements Printable,Showable{

8. public void print(){System.out.println("Hello");}

9. public void show(){System.out.println("Welcome");}

10.

11. public static void main(String args[]){

12. A7 obj = new A7();

13. obj.print();

14. obj.show();

15. }

16. }

Regular Expressions

Java Regex

The Java Regex or Regular Expression is an API to define a pattern for searching or

manipulating strings.

It is widely used to define the constraint on strings such as password and email validation. After

learning Java regex tutorial, you will be able to test your regular expressions by the Java Regex

Tester Tool.

Java Regex API provides 1 interface and 3 classes in java.util.regex package.

java.util.regex package

The Matcher and Pattern classes provide the facility of Java regular expression. The

java.util.regex package provides following classes and interfaces for regular expressions.

1. MatchResult interface

2. Matcher class

3. Pattern class

4. PatternSyntaxException class

Matcher class

It implements the MatchResult interface. It is a regex engine which is used to perform match

operations on a character sequence.

No. Method Description

1 boolean matches() test whether the regular expression matches the pattern.

2 boolean find() finds the next expression that matches the pattern.

3 boolean find(int start) finds the next expression that matches the pattern

from the given start number.

4 String group() returns the matched subsequence.

5 int start() returns the starting index of the matched subsequence.

6 int end() returns the ending index of the matched subsequence.

7 int groupCount() returns the total number of the matched subsequence.

Pattern class

It is the compiled version of a regular expression. It is used to define a pattern for the regex

engine.

No. Method Description

1 static Pattern compile(String regex) compiles the given regex and returns the

 instance of the Pattern.

2 Matcher matcher(CharSequence input) creates a matcher that matches the given input

with the pattern.

3 static boolean matches(String regex,

CharSequence input)

It works as the combination of compile and matcher

 methods. It compiles the regular expression and matches

 the given input with the pattern.

4 String[] split(CharSequence input) splits the given input string around matches of given pattern.

5 String pattern() returns the regex pattern.

1. import java.util.regex.*;

2. public class RegexExample1{

3. public static void main(String args[]){

4. //1st way

5. Pattern p = Pattern.compile(".s");//. represents single character

6. Matcher m = p.matcher("as");

7. boolean b = m.matches();

8.

9. //2nd way

10. boolean b2=Pattern.compile(".s").matcher("as").matches();

11.

12. //3rd way

13. boolean b3 = Pattern.matches(".s", "as");

14.

15. System.out.println(b+" "+b2+" "+b3);

16. }}

Exception Handling

The Exception Handling in Java is one of the powerful mechanism to handle the runtime

errors so that the normal flow of the application can be maintained.

In this tutorial, we will learn about Java exceptions, it's types, and the difference between

checked and unchecked exceptions.

Dictionary Meaning: Exception is an abnormal condition.

In Java, an exception is an event that disrupts the normal flow of the program. It is an object

which is thrown at runtime.

Exception Handling is a mechanism to handle runtime errors such as ClassNotFoundException,

IOException, SQLException, RemoteException, etc.

Advantage of Exception Handling

The core advantage of exception handling is to maintain the normal flow of the application.

An exception normally disrupts the normal flow of the application; that is why we need to

handle exceptions. Let's consider a scenario:

1. statement 1;

2. statement 2;

3. statement 3;

4. statement 4;

5. statement 5;//exception occurs

6. statement 6;

7. statement 7;

8. statement 8;

9. statement 9;

10. statement 10;

Suppose there are 10 statements in a Java program and an exception occurs at statement 5; the

rest of the code will not be executed, i.e., statements 6 to 10 will not be executed. However,

when we perform exception handling, the rest of the statements will be executed. That is why

we use exception handling in Java.

Hierarchy of Java Exception classes

The java.lang.Throwable class is the root class of Java Exception hierarchy inherited by two

subclasses: Exception and Error. The hierarchy of Java Exception classes is given below:

Types of Java Exceptions

There are mainly two types of exceptions: checked and unchecked. An error is considered as

the unchecked exception. However, according to Oracle, there are three types of exceptions

namely:

1. Checked Exception

https://www.javatpoint.com/java-tutorial

2. Unchecked Exception

3. Error

Difference between Checked and Unchecked Exceptions
1) Checked Exception

The classes that directly inherit the Throwable class except RuntimeException and Error are

known as checked exceptions. For example, IOException, SQLException, etc. Checked

exceptions are checked at compile-time.

2) Unchecked Exception

The classes that inherit the RuntimeException are known as unchecked exceptions. For

example, ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException,

etc. Unchecked exceptions are not checked at compile-time, but they are checked at runtime.

3) Error

Error is irrecoverable. Some example of errors are OutOfMemoryError, VirtualMachineError,

AssertionError etc.

Java Exception Keywords

Java provides five keywords that are used to handle the exception. The following table

describes each.

Keyword Description

try The "try" keyword is used to specify a block where we should

place an exception code. It means we can't use try block alone.

 The try block must be followed by either catch or finally.

catch The "catch" block is used to handle the exception.

It must be preceded by try block which means we can't use catch block alone.

It can be followed by finally block later.

finally The "finally" block is used to execute the necessary code of the program.

It is executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws The "throws" keyword is used to declare exceptions.

It specifies that there may occur an exception in the method.

It doesn't throw an exception. It is always used with method signature.

Java Exception Handling Example

Let's see an example of Java Exception Handling in which we are using a try-catch statement

to handle the exception.

JavaExceptionExample.java

1. public class JavaExceptionExample{

2. public static void main(String args[]){

3. try{

4. //code that may raise exception

5. int data=100/0;

6. }catch(ArithmeticException e){System.out.println(e);}

7. //rest code of the program

8. System.out.println("rest of the code...");

9. }

10. }

Major reasons why an exception Occurs

• Invalid user input

• Device failure

• Loss of network connection

• Physical limitations (out-of-disk memory)

• Code errors

• Opening an unavailable file

Errors represent irrecoverable conditions such as Java virtual machine (JVM)

running out of memory, memory leaks, stack overflow errors, library incompatibility,

infinite recursion, etc. Errors are usually beyond the control of the programmer, and

we should not try to handle errors.

Difference between Error and Exception

• Error: An Error indicates a serious problem that a reasonable application

should not try to catch.

• Exception: Exception indicates conditions that a reasonable application

might try to catch.

Exception Hierarchy

All exception and error types are subclasses of the class Throwable, which is the base

class of the hierarchy. One branch is headed by Exception. This class is used for

exceptional conditions that user programs should catch. NullPointerException is an

example of such an exception. Another branch, Error is used by the Java run-time

system(JVM) to indicate errors having to do with the run-time environment

itself(JRE). StackOverflowError is an example of such an error.

Java Exception Hierarchy

Types of Exceptions
Java defines several types of exceptions that relate to its various class libraries. Java

also allows users to define their own exceptions.

https://www.geeksforgeeks.org/jvm-works-jvm-architecture/

Exceptions can be categorized in two ways:

1. Built-in Exceptions

• Checked Exception

• Unchecked Exception

2. User-Defined Exceptions
Let us discuss the above-defined listed exception that is as follows:

1. Built-in Exceptions

Built-in exceptions are the exceptions that are available in Java libraries. These

exceptions are suitable to explain certain error situations.

• Checked Exceptions: Checked exceptions are called compile-time

exceptions because these exceptions are checked at compile-time by the

compiler.

• Unchecked Exceptions: The unchecked exceptions are just opposite to the

checked exceptions. The compiler will not check these exceptions at

compile time. In simple words, if a program throws an unchecked

exception, and even if we didn’t handle or declare it, the program would

not give a compilation error.

Note: For checked vs unchecked exception, see Checked vs Unchecked Exceptions

2. User-Defined Exceptions:

Sometimes, the built-in exceptions in Java are not able to describe a certain situation.

In such cases, users can also create exceptions, which are called ‘user-defined

Exceptions’.

The advantages of Exception Handling in Java are as follows:

1. Provision to Complete Program Execution

2. Easy Identification of Program Code and Error-Handling Code

3. Propagation of Errors

4. Meaningful Error Reporting

5. Identifying Error Types

https://www.geeksforgeeks.org/checked-vs-unchecked-exceptions-in-java/

Methods to print the Exception information:
1. printStackTrace()

This method prints exception information in the format of the Name of the exception:

description of the exception, stack trace.

Example:

• Java

//program to print the exception information using printStackTrace() method

import java.io.*;

class GFG {

 public static void main (String[] args) {

 int a=5;

 int b=0;

 try{

 System.out.println(a/b);

 }

 catch(ArithmeticException e){

 e.printStackTrace();

 }

 }

}

Output
java.lang.ArithmeticException: / by zero

at GFG.main(File.java:10)

2. toString()

The toString() method prints exception information in the format of the Name of the

exception: description of the exception.

Example:

• Java

//program to print the exception information using toString() method

import java.io.*;

class GFG1 {

 public static void main (String[] args) {

 int a=5;

 int b=0;

 try{

 System.out.println(a/b);

 }

 catch(ArithmeticException e){

 System.out.println(e.toString());

 }

 }

}

Output
java.lang.ArithmeticException: / by zero

3. getMessage()

The getMessage() method prints only the description of the exception.

Example:

• Java

//program to print the exception information using getMessage() method

import java.io.*;

class GFG1 {

 public static void main (String[] args) {

 int a=5;

 int b=0;

 try{

 System.out.println(a/b);

 }

 catch(ArithmeticException e){

 System.out.println(e.getMessage());

 }

 }

}

Output
/ by zero

How Does JVM Handle an Exception?
Default Exception Handling: Whenever inside a method, if an exception has

occurred, the method creates an Object known as an Exception Object and hands it off

to the run-time system(JVM). The exception object contains the name and description

of the exception and the current state of the program where the exception has occurred.

Creating the Exception Object and handling it in the run-time system is called

throwing an Exception. There might be a list of the methods that had been called to

get to the method where an exception occurred. This ordered list of methods is

called Call Stack. Now the following procedure will happen.

• The run-time system searches the call stack to find the method that

contains a block of code that can handle the occurred exception. The block

of the code is called an Exception handler.

• The run-time system starts searching from the method in which the

exception occurred and proceeds through the call stack in the reverse order

in which methods were called.

• If it finds an appropriate handler, then it passes the occurred exception to

it. An appropriate handler means the type of exception object thrown

matches the type of exception object it can handle.

• If the run-time system searches all the methods on the call stack and

couldn’t have found the appropriate handler, then the run-time system

handover the Exception Object to the default exception handler, which is

part of the run-time system. This handler prints the exception information

in the following format and terminates the program abnormally.
Exception in thread "xxx" Name of Exception : Description

... // Call Stack

Look at the below diagram to understand the flow of the call stack.

